On the Long-Range Dependence of Fractional Brownian Motion
نویسندگان
چکیده
منابع مشابه
On the Convergence of MMPP and Fractional ARIMA Processes with Long-Range Dependence to Fractional Brownian Motion
Though the various models proposed in the literature for capturing the long-range dependent nature of network traac are all either exactly or asymptotically second order self-similar, their eeect on network performance can be very diierent. We are thus motivated to characterize the limiting distributions of these models so that they lead to parsimonious modeling and a better understanding of ne...
متن کاملFractional Processes with Long-range Dependence
Abstract. We introduce a class of Gaussian processes with stationary increments which exhibit long-range dependence. The class includes fractional Brownian motion with Hurst parameter H > 1/2 as a typical example. We establish infinite and finite past prediction formulas for the processes in which the predictor coefficients are given explicitly in terms of the MA(∞) and AR(∞) coefficients. We a...
متن کاملOn the Mixed Fractional Brownian Motion
If H = 1/2, BH is the ordinary Brownian motion denoted by B = {Bt, t ≥ 0}. Among the properties of this process, we recall the following: (i) B 0 = 0P-almost surely; (ii) for all t ≥ 0, E((B t )2)= t2H ; (iii) the increments of BH are stationary and self-similar with order H ; (iv) the trajectories of BH are almost surely continuous and not differentiable (see [7]). Let us take a and b as two r...
متن کاملOn the Two - Dimensional Fractional Brownian Motion
We study the two-dimensional fractional Brownian motion with Hurst parameter H > 1 2. In particular, we show, using stochastic calculus , that this process admits a skew-product decomposition and deduce from this representation some asymptotic properties of the motion.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2013
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2013/842197